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Abstract15

Imaging-based spatial transcriptomics (IST) enables high-resolution spatial mapping of RNA species. A key16

challenge in IST is accurate cell segmentation to assign each RNA molecule to the right cell. Here, we present17

RNA2seg, a novel segmentation algorithm trained on over 4 million cells from MERFISH and CosMx datasets18

across seven organs using a teacher-student training scheme. RNA2seg integrates RNA point clouds and all19

available membrane and nuclear stainings. Validation on manually annotated data shows superior perfor-20

mance including in zero-shot and few-shot settings. The method is available as a documented pip package:21

https://github.com/fish-quant/rna2seg.22
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1 Background24

Understanding the spatial organization of tissues at the single-cell level is essential for advancing our knowledge of25

disease progression and development [1, 2]. Advances in spatial transcriptomics (ST) now allow the measurement26

of gene expression at cellular and even subcellular resolution, offering valuable insights into cell type distribution,27

cell-to-cell communication [3], and disease-specific signatures [4].28

ST can be broadly categorized into sequencing-based and imaging-based spatial transcriptomics (IST). While29

sequencing-based techniques provide coverage of the full transcriptome [5], they do not offer cellular or subcellular30

resolution. In contrast, IST enables the localization of RNA molecules in their cellular environment, albeit at the31

cost of being limited to a predefined set of target genes [6, 7].32

A critical aspect of IST for assessing single-cell gene expression (GE) and subsequent cell type identification33

is the accurate assignment of measured RNA to the correct cell. To achieve this, IST typically provides several34
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staining channels, including nuclear and membrane markers, as well as non-specifically labeled transcripts. Seg-35

mentation algorithms then assign each transcript to a specific cell, generating a spatially resolved count matrix36

for subsequent analysis. This segmentation step is critical, as errors in RNA-cell association result in erroneous37

transcriptional profiles and thus affect all downstream analyses, such as cell type identification [8].38

39

Segmentation algorithms for IST can be divided into staining-based and point cloud-based methods. The former40

rely on dedicated membrane or nuclei stainings and allow the application of deep learning methods such as Mesmer41

[9] or Cellpose [10], which can achieve performance close to human-level. However, one limitation comes from the42

highly variable quality of the cell staining in IST. Indeed, the fluorescent reporters in these channels often bind to43

cell-type specific proteins leaving the rest of the tissue unlabeled [11]. Consequently, segmentation accuracy — and44

therefore the accuracy of all downstream analyses — tends to vary significantly across the tissue, introducing biases45

and unacceptable inconsistencies in the analysis results.46

On the other hand, the measured RNA signal is itself also informative on cellular boundaries. The density of47

RNAs varies across the cell, and the transcriptional profiles of cells of different type are per definition different.48

These observations can be used to design cell segmentation algorithms that operate directly on the RNA point49

clouds. Examples include Baysor [12], SCS [13], PciSeq [14] and ComSeg [8].50

While these methods are promising alternatives in the absence of dedicated cell and nuclear staining, they51

come with several limitations. For instance, they often struggle to accurately separate neighboring cells with highly52

similar RNA compositions. Furthermore, these approaches typically start from segmented nuclear regions [8, 14]53

and subsequently associate RNAs with segmented nuclei. By design, they are unable to handle missing nuclei,54

a common issue when working with 2D tissue sections derived from a three-dimensional volume. Deep Learning55

models trained on RNA point clouds and DAPI images have also been proposed recently [15, 16]. However, these56

methods are limited by the scarcity of annotated data [15] or rely on biological prior information that are hard57

to obtain in practice [16]. To the best of our knowledge, no existing method fully leverages all available stainings,58

including membrane stainings and RNA point clouds.59

Here, we propose RNA2seg, a deep-learning segmentation model designed for IST data, which combines the60

advantages of staining and point-cloud segmentation methods. RNA2seg takes an arbitrary number of staining61

channels and the RNA positions as input and trains a multiple-instance segmentation model for cell segmentation.62

To the best of our knowledge, this is the first method integrating all available staining channels and RNA point63

clouds for segmentation.64

Deep Learning algorithms for segmentation typically require large annotated datasets which can be very chal-65

lenging to produce and are missing for IST data. To address this bottleneck, we devised a teacher-student strategy66

that enables RNA2seg to be trained without the need for manual annotations by leveraging the teacher model in67

areas with high-quality staining. This approach allowed us to train RNA2seg on a dataset of over 4 million cells from68

seven different human organs and two distinct IST protocols - MERFISH [6] and CosMx [11] (see Supplementary69

Table 1).70

We validated RNA2seg against a set of 724 manually annotated cells across 5 datasets of different organs (see71

Supplementary Table 2). These annotated images were witheld during training. We demonstrate that RNA2seg72

outperforms current state-of-the-art (SOTA) methods on these manually annotated dataset. This large and unprece-73

dented set of manually annotated cells was created using a novel visualization approach for RNA point clouds,74

which color-codes RNA point clouds based on co-expression, assigning similar colors to co-expressed RNA species.75

This approach eases the cell annotation task in regions where membrane staining is of poor quality. We make the76

annotated data accessible to the scientific community at https://zenodo.org/records/14912364. As our training pro-77

cedure does not rely on manual annotation, we lastly demonstrate how our model can be easily and automatically78

fine-tuned for use with previously unseen datasets.79

RNA2seg is designed for large datasets and supports input in OME-Zarr format [17] through SpatialData [18]80

and is implemented on top of the SOPA framework [19]. RNA2seg is available as a fully documented Python pip81

package (https://github.com/fish-quant/rna2seg).82
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2 Result83

2.1 Method overview84

RNA2seg is a deep learning (DL)-based method for the segmentation of cells from Spatial Transcriptomics (ST)85

data that integrates an arbitrary number of channels with nuclear and membrane markers and RNA positional data86

(Figure 1A).87

To achieve this, RNA2seg merges staining images and RNA point clouds, converting RNA positions into an88

image. To ensure that our method is independent of the gene panels used, we assigned to each pixel the number of89

RNAs detected irrespective of the encoding gene, and further processed the resulting image (see Methods 5.3) to90

account for its sparsity. While this representation discards RNA identity and retains only positional information,91

we argue that the resulting network may be more easily transferable to new datasets with different gene panels92

unseen during training. Importantly, we also tested alternative representations comprising RNA identity without93

observing notable performance improvements (section 2.4).94

To handle the varying number and types of nuclear and membrane staining channels, we use ChannelNet95

[20] - a DL framework that takes an arbitrary number of channels, extracts relevant information from them,96

and encodes it into a three-channel image. The merged membrane and nuclear staining representations are then97

concatenated with the RNA positional images to form the input of our segmentation network, which uses a U-net98

architecture. By incorporating information about the detected RNAs, we hypothesized that our model can achieve99

robust segmentation, even in regions with low-quality or missing staining.100

The choice of the most efficient architecture for cell and nucleus segmentation — whether CNNs or newer,101

more flexible models with more parameters, such as Transformers or the recently proposed Mamba architecture —102

remains an active debate in the research community [21, 22]. In this study, we evaluated two architectures: CNN-103

based U-Net, similar to Cellpose [10], and Mamba-U-Net, a recently proposed segmentation model [23]. We refer to104

these models as RNA2seg-CNN and RNA2seg-Mamba, respectively. Following the Cellpose strategy, our networks105

are trained to predict gradient flow toward cell centers, serving as a pretext task for cell instance segmentation.106

Training deep learning segmentation models typically requires large annotated datasets to achieve high perfor-107

mance. However, to the best of our knowledge, no large dataset with manually annotated cellular boundaries exists108

for image-based spatial transcriptomics data.109

Manual annotation for segmentation is often time-consuming. Besides, for IST data, it is even more challenging110

due to several factors: the varying quality of membrane staining, the difficulty of visually interpreting RNA point-111

cloud data, and the scattering of relevant information across a relatively large number of channels. Consequently,112

the time and effort needed to generate a sufficient number of annotations for training seem prohibitive.113

To address this, we developed a student-teacher framework that enables RNA2seg to be trained without manual114

annotations. To generate the training data for RNA2seg, we first apply a teacher pre-trained network, such as115

Cellpose, for cell and nucleus segmentation. Erroneously segmented cells are then filtered out, while the accurately116

segmented cells from the teacher model are retained, ensuring that the training process relies exclusively on reliable117

labels (Figure 1B). By learning the RNA spatial distribution of cells from the teacher generated labels, the model118

can segment even low-quality staining regions thanks to the complementary spatial RNA patterns.119

To remove segmentation errors from the generated teacher labels, we rely on a set of rules (see Methods 5.2)120

designed to ensure consistency between nuclear and cellular segmentations. For instance, cells with multiple nuclei121

are removed. In regions with low staining quality, cells are often missed entirely by the teacher network. In this122

case, detected nuclei are used as substitutes. Of note, our training scheme for partially annotated data enables the123

inclusion of nuclei in the training dataset, using them as partial labels to represent cells. The underlying hypothesis124

being that cell and nuclear centers are relatively close, resulting in nearly equivalent prediction tasks regarding the125

gradient flow.126

Additionally, background labels are assigned to pixels in low RNA density regions (see Methods 5.2.2). Pixels127

that remain unlabeled by the above procedures (i.e. neither cell nor background) are excluded from the training128

process through partial backpropagation [24]. The loss can thus be written as follows:129

L(Y, Ŷ ) =
1

|P|
∑

pixel∈P

l(Ypixel, Ŷpixel)
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where Y represents the teacher segmentation, Ŷ is the prediction of RNA2seg, and P =130

{Curated cells & nuclei} ∪ {Background}.131

132

Furthermore, we incorporate dropout on the membrane staining images, i.e. membrane staining image channels133

were set to 0 with a dropout probability of 0.25, and thus emulating missing membrane staining signals. This forces134

RNA2seg to learn how to segment cells solely from RNA point clouds in low quality staining areas.135

136

Our automated student-teacher training pipeline enables large-scale model training. RNA2seg was trained on137

over 4 million cells across seven different human organs : breast, colon, lung, melanoma, uterine, prostate and ovarian.138

Two different IST technologies were included in the training set, MERFISH [6] data from Vizgen’s public Human139

FFPE Immuno-oncology Data Release (VHFI) and a public CosMX human lung dataset [11] (see Supplementary140

Table 1 for additional details). The training inputs incorporated the DAPI stain, the Poly-T stain, all of the three141

additional membrane staining channels available in each of these datasets, as well as the RNA positional images.142

The cell instance segmentations used as teacher in this study are available at: https://zenodo.org/records/14916899143
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Fig. 1 RNA2seg Methodology Overview. A) Segmentation model combining RNA images and multiple stainings with partial super-
vision. An arbitrary number of input stainings are first processed by an encoding network to produce a merged image with a fixed
number of 3 channels. This encoded staining representation is then merged with an image displaying RNA positions and processed by a
U-Net-like model. The final output is the flow field of the predicted cells. The model is trained on cell segmentation masks Y provided
by the teacher network after application of consistency rules, as illustrated in B. B) Creation of training labels from the segmentation
masks provided by the teacher network, after application of consistency rules between cell and nucleus segmentation.

2.2 A manually curated ground truth dataset for segmentation of IST data144

Validation of cell segmentation from IST data is particularly challenging. The gold standard for validation of145

automatic segmentation usually involves manual annotation by experts. However, in IST, manual annotation is146

complicated by several factors: the quality of the membrane staining is highly variable (e.g. Figure 2B), and manual147

annotation of the membrane channels can therefore not be achieved in all parts of the image. Furthermore, it is148

difficult to visually interpret RNA point cloud data and to manually infer the correct cellular boundaries. Third,149

the relevant information is scattered across a relatively large number of channels. All of these factors make manual150

annotation of IST data particularly difficult.151
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For this reason, various validation strategies and quantitative metrics have been proposed that do not rely on152

manual annotation, each with inherent limitations. For example, Baysor [12] proposes to compare two segmentation153

methods by first identifying the consensus region segmented by both methods as well as the associated expression154

profile. Then, the correlation in gene expression between this consensus region and the areas excluded by each155

method is calculated. The method yielding higher correlation is considered superior. However, this approach cannot156

detect systematic errors shared by both methods, nor can it account for spatially heterogeneous gene expression157

within individual cells.158

Another approach relies on simulations [14, 25, 8], which provide complete control over the ground truth. While159

simulations are useful, they may fail to replicate all the challenges encountered in experimental data. Finally,160

previous works [16] introduces quality metrics, such as shape and gene expression features, to identify outliers.161

However, these metrics serve more as a way to assess the plausibility of results, rather than offering a rigorous162

quantitative comparison against a ground truth.163

We argue that the gold standard for validation of segmentation methods is the comparison to manually generated164

ground truth. To enable manual annotation of cell boundaries, even in regions of poor marker quality, we developed165

a novel visualization approach for RNA point clouds and incorporated it into our manual annotation workflow166

(Figure 2A), as described below.167

In order to visualize a large number of RNA species in the same image, we assign one color to each RNA species.168

However, assignment of random colors clearly cannot lead to an interpretable image. To overcome this limitation,169

we assign similar colors to genes that are co-expressed, based on the intuition that co-expressed genes are likely to170

belong to the same cell. By coloring each set of co-expressed genes differently, we can accurately distinguish cells171

having different gene co-expression patterns, as shown in Figure 2B. Our novel co-expression visualization hence172

eases the annotation task on low quality staining area.173

174

To implement this co-expression visualization, we first estimate a co-expression matrix using spatial correlation175

as a proxy for gene co-expression, as previously described [8] (see Methods 5.6). Each gene is then represented176

by a co-expression vector, containing its spatial correlation values with other genes. These vectors are reduced177

to three dimensions using PCA, enabling their visualization as RGB colors (Figure 2). Using this workflow, we178

annotated 724 cells from both high- and low-quality staining regions across five MERFISH datasets from dif-179

ferent organs, breast, colon, melanoma and lung from VHFI, and the MERFISH Mouse Ileum dataset [12].180

The number of annotated cells per datasets is summarized in Supplementary Table 2. The annotated datasets181

are available at: https://zenodo.org/records/14912364 . The python code for RNA visualization is available at182

https://github.com/tdefa/gene coexpression visualization .183
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Fig. 2 Methodology for RNA species colorization to ease manual cell annotation.A)Visualization with co-expression
for manual annotation: The first panel shows a synthetic example of RNA distribution, where random colors are
initially assigned to each RNA species. A spatial correlation matrix is then computed to quantify the recurrent
neighbors of each RNA species. This matrix is projected into an RGB color space, assigning similar colors to RNA
species that frequently occur as neighbors. This new color assignment simplifies manual cell annotation. B) Example
of MERFISH staining: The top panels show MERFISH staining on VHFI breast tissue, where staining quality is
heterogeneous. The bottom panels display a zoomed-in region where the staining quality is insufficient for manual
annotation. However, the RNA distribution, combined with our correlation-based color visualization, enables to
identify more cell contours.
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2.3 Benchmark on annotated datasets184

Our annotated dataset provides a valuable resource for benchmarking segmentation methods. We compared185

RNA2seg with both image-based and point cloud-based segmentation approaches. For image-based methods, we186

evaluated the CNN-based Cellpose and the segmentation provided by Vizgen for the VHFI dataset. Of note, the187

Cellpose model used in this benchmark is also the Cellpose model used as a teacher to train RNA2seg. For point188

cloud-based methods, we tested Baysor [12] and our recently published method, ComSeg [8], both with nuclei as189

prior segmentation. Baysor groups RNA into single-cell expression profiles by identifying spatially homogeneous190

transcriptomic regions, while ComSeg leverages a spatial co-expression graph to assign RNAs to nuclei.191

For staining-based methods, the segmentation output assigns each pixel to either a cell or the background. To eval-192

uate performance, we calculated the best-matched Intersection over Union (IoU) between each annotated cell and193

the segmentation output. In the case of point cloud methods, pixels are not labeled and only RNAs are assigned194

to cells. In staining-based methods, segmentation assigns each pixel to either a cell or the background, whereas195

point-cloud methods associate RNAs with cells while leaving other pixels unlabeled. To ensure a fair comparison196

between staining-based and point cloud-based methods, we computed the best-matched RNA-level-IoU for each cell197

and reported the average across all cells. Likewise, pixel-level-IoU are reported for comparison of staining-based198

methods. We applied these methods to four VHFI datasets from human breast, colon, melanoma, and lung tissues199

(Figure 3 A-B, Supplementary Figure 1-2). While these datasets were part of the training set, the annotated regions200

were excluded during training, such that training and test sets were disjoint. On these datasets, RNA2seg-CNN and201

RNA2seg-Mamba demonstrated equal or superior performance compared to staining-based methods (Figure 3C).202

The performance advantage was particularly high on datasets where staining quality is often poor, like the VHFI203

Breast datasets (see Supplementary Figure 3). In contrast, RNA2seg, Cellpose and the segmentation published with204

the VHFI performed similarly on the VHFI lung dataset, where staining quality is high. This aligns with our abla-205

tion study (Supplementary Figure 4), which shows that the performance gap between RNA2seg models with and206

without RNA point cloud is small on the VHFI lung dataset, whereas it is high on the VHFI breast dataset, where207

heterogeneous staining quality makes the additional RNA positional information valuable.208

Point cloud-based methods, Baysor and ComSeg, performed worse than image-based methods on datasets with209

high-quality staining, such as lung tissue. However, their performances are only slightly inferior on datasets with210

challenging staining, like breast and melanoma.211

212

We also annotated cells in the mouse Ileum dataset [12], which was not part of the training set and features a213

different staining scheme. Unlike the training datasets, it includes only one cell boundary and a DAPI staining, but214

no PolyT staining. Despite these differences, RNA2seg outperformed ComSeg, as well as the Baysor and Cellpose215

segmentations published in the original study. Of note, the Cellpose segmentation used in this benchmark comes216

from the Cellpose model specifically fine-tuned on the Mouse Ileum dataset by the original authors. These results217

highlight the generalization capabilities of RNA2seg, demonstrating its effectiveness on an unseen dataset from a218

different species, a different tissue type, and with different staining conditions.219

220

We also compared different deep learning architectures. Overall, RNA2seg-CNN and RNA2seg-Mamba demon-221

strate comparable performance. However, RNA2seg-Mamba is significantly more computationally demanding, with222

seven times more parameters than RNA2seg-CNN (6.6 million vs. 44.2 million). Therefore, for the remainder of this223

study, we focus exclusively on RNA2seg-CNN, referred to as RNA2seg. Of note, the performance of RNA2seg is224

stable across different training initializations, as shown in Supplementary Figure 5. The performance of RNA2seg-225

CNN displayed in Figure 3 are the average score from of 10 independently trained models. All the segmentation226

generated for this benchmark are available at: https://zenodo.org/records/14916899227
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Fig. 3 Benchmark of different IST cell segmentation methods. A) Example of stainings and RNA point clouds.
From left to right in the first row: DAPI staining, RNA spots with random color, RNA spots with co-expression
color, and manual annotation in blue. The second row displays the three different available stainings in the VHFI
dataset. B) Example of segmentation from VHFI, Cellpose, and RNA2seg-CNN C) Benchmark of Mean Pixel IoU
and RNA IoU across different methods and datasets.
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2.4 Comparison of different RNA image representations228

In the above results, the RNA representation used by the network exclusively relates to RNA position and dis-229

regards RNA species identity. However, RNA identity can be integrated into the model along with positional230

information by assigning a unique color to each RNA species. In order to test whether this is beneficial to the231

overall algorithm performance, we used first the encoding initially developed for visualization (Section 2.2), where232

we assign similar colors to RNA species that are co-expressed in the tissue. Secondly, we evaluated an approach233

where the colors assigned to RNA species are treated as learnable parameters during training. The goal of this234

approach is to let the network determine the optimal RNA species colors for segmentation.235

236

While the inclusion of co-expression information in RNA visualizations can aid manual annotation by humans,237

our ablation study (Supplementary Figure 4) demonstrates that it does not improve RNA2seg’s performance.238

We obtain a comparable performance for RNA2seg with positional-only data, co-expression-based coloring, and239

learned RNA species colors. This suggests that the RNA2seg already captures the usefull RNA identity information240

inherently from RNA positional data.241

Additionally, a potential limitation of using RNA colors to encode RNA species identity instead of solely using242

RNA positions is that RNA2seg may not generalize well to new datasets. Indeed, different datasets might spatially243

resolve different RNA species, leading to novel color patterns that could require re-training. Similarly, co-expression-244

based RNA visualizations degrade model performance in zero-shot settings, as demonstrated by the results on245

the mouse ileum dataset (Supplementary Figure 4), which was not part of the training data. This performance246

decline occurs because co-expression visualizations rely on dataset-specific gene panels, leading to different color247

patterns across datasets with different panels. Such variability hinders the model’s ability to generalize to unseen248

data. Finally, this comparison of various RNA image representations confirms that relying solely on RNA positional249

information is a relevant approach for RNA2seg.250

2.5 Quantification of cell-level segmentation errors251

So far, our evaluation metrics measured inaccuracies in contours or RNA assignment. Next, we turned to cell-level252

metrics providing further quantitative comparisons between the benchmarked methods.253

1. Spurious cells are defined as cells that do not intersect with any nucleus and contain fewer than a minimal254

number of RNA molecules (see Methods 5.8). Such cells are likely false-positive segmentations.255

2. Inconsistent cells are defined as cells that intersect with a nucleus but fail to fully enclose it and cells that256

contain several nuclei (see Methods 5.8). Such cases are likely indicative of segmentation inaccuracies.257

Examples of spurious and inconsistent cells are illustrated in Figure 4A. A UMAP visualization of the seg-258

mented cells from each method, highlighting spurious and inconsistent cells, is presented in Figure 4B. We observe259

that inconsistent cells and in particular, spurious cells show a very specific gene expression pattern, suggesting that260

their identification and exclusion from the analysis are essential for downstream analysis.261

262

Both metrics are based on prior nucleus segmentation derived from DAPI staining, which is typically more stable263

and reliable across tissues and cell types compared to cell boundary staining. This DAPI staining stability allows264

us to assume that nuclei segmentation is accurate. Under this assumption, we calculate the proportion of spurious265

and inconsistent cells as a surrogate measure of segmentation quality.266

Across the four datasets analyzed, RNA2seg demonstrates an almost negligible percentage of spurious cells267

(Figure 4C). While spurious cells can be eliminated through post-processing, their low occurrence indicates that268

RNA2seg effectively associates RNA density variations with cell instances, achieving one of the method’s key269

objectives. Furthermore, RNA2seg exhibits a lower percentage of inconsistent cells compared to other methods,270

meaning it produces biologically coherent segmentations with fewer implausible segmentation results (Figure 4C).271

This highlights the model’s ability to generate more accurate and meaningful segmentations, which is essential for272

downstream analyses.273
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Fig. 4 Spurious and inconsistent cells. A) Example of spurious and inconsistent segmentation. B) Umap of segmented cells: consistent
cells are colored in blue, inconsistent cells in red, and spurious cells in orange. C) % of inconsistent and spurious cells for each dataset
and segmentation method.
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2.6 Automatic fine-tuning of RNA2seg274

RNA2seg was trained on publicly available datasets. However, new datasets can display cell diversity and staining275

variability that differ from these training data. In this section, we apply RNA2seg to out-of-training-distribution276

data, using an in-house Hamster MERFISH dataset as an example. This dataset displays significant differences277

from the training data, with locally reduced RNA density and variable DAPI signal quality. Further, the nuclei in278

certain regions are densely packed and indistinguishable from one another (Figure 5, first row, arrows).279

We first applied Cellpose on the cell boundary staining 1, which is one of the proposed standard workflows by280

the vendor (Figure 5, second row). Although Cellpose effectively delineates many cells, some remain unsegmented281

(see Figure 5, detail A-B-C, arrows). We then applied RNA2seg without retraining in a zero-shot setting (Figure282

5, third row). While cell segmentation was generally accurate, not all cells are segmented, especially in areas where283

the data deviates significantly from the training distribution. This issue is particularly noticeable in regions where284

the DAPI signal is near saturation and the RNA density is low.285

We then explored whether few-shot learning could increase the usability of our model for such unseen data.286

In short, this strategy allows the model to be fine-tuned with minimal training and low computational demands,287

requiring only a few iterations on new targeted data to quickly adapt to an out-of-distribution dataset. However, even288

such minimal retraining requires annotated data. To remove the need to manually curate such data, we leveraged our289

automatic student-teacher training approach to fine-tune RNA2seg on our Hamster MERFISH dataset by using the290

Cellpose segmentation (see Method section 5.9). Importantly, this annotation is not always accurate and incomplete291

but can be obtained fully automatically. After retraining for 10 minutes on our P100 GPU (see Method section292

5.9), RNA2seg yielded significantly improved results, especially in regions that were previously poorly segmented293

(Figure 5, fourth row).294

In summary, the results presented in Figure 5 show that automatic fine-tuning of RNA2seg leads to better295

segmentation results on our in-house Hamster Brain dataset. Surprisingly, Figure 5 also shows that even though the296

Cellpose teacher model sometimes misses cells and struggles to segment areas with weak staining, the fine-tuned297

RNA2seg student model still produces consistent segmentation results in these areas (Figure 5, fourth row). This298

supports the efficiency of our student-teacher training approach and indicates that our automatic fine-tuning allows299

the model to easily adapt to new tissue types.300
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Fig. 5 Visualization of RNA2seg segmentation using zero-shot and few-shot-learning for fine-tuning on the Hamster
Brain dataset. The first row presents the input data: DAPI, three different cell boundary stainings, and RNA
spots colored using our co-expression visualization. The second row displays the Cellpose teacher segmentation
used for fine-tuning RNA2seg. It then shows in the third row the RNA2seg zero-shot segmentation results. The
fourth row shows the segmentation done by our fine-tuned RNA2seg using the Cellpose teacher segmentation of
the second row. The figure includes three zoomed-in crops (A, B, C) extracted from the initial data, showcasing
the three segmentation results (teacher segmentation, zero-shot RNA2seg, and fine-tuned RNA2seg) side by side.
This visualization highlights the significant improvement achieved through few-shot-learning, enhancing both the
alignment with cell boundary stainings and RNA distribution. Specifically, plot A highlights a region where both
Zero-Shot RNA2seg and the teacher model miss cells, while fine-tuned RNA2seg successfully segments them. Plots B
and C demonstrate improved boundary placement in areas with weak staining, even where the teacher model fails.
Overall, this figure illustrates that few-shot-learning remains effective even when the teacher segmentation overlooks
cells, particularly in poorly stained regions. Fine-tuning enables the model to adapt efficiently to a new dataset while
maintaining good performance. 13
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3 Discussion301

Cell segmentation is currently a major bottleneck in using IST data for spatial biology. Segmentation errors can prop-302

agate through downstream analyses, leading to inaccurate assessments of subcellular RNA localization, erroneous303

cell-level gene expression measurements, and ultimately incorrect cell type classification.304

Here, we present RNA2seg, which, to the best of our knowledge, is the first cell segmentation method for IST305

data that integrates DAPI staining, multiple cell membrane stainings, and the spatial distribution of RNAs. By306

leveraging these complementary data sources, RNA2seg is particularly effective in regions with low staining quality,307

where the last generation of cell segmentation methods for fluorescence microscopy data, such as Cellpose, are308

bound to fail. At the same time, RNA2seg fully utilizes high-quality staining data where it is available.309

RNA2seg relies on a teacher-student framework and can therefore be trained without relying on manual anno-310

tation. This is especially important for IST data, where manual annotation is exceptionally time-consuming.311

Furthermore, large deep learning models achieve their full potential only when trained on extensive annotated312

datasets. Our framework allows RNA2seg to be trained on more than 4 million cells across diverse tissues, gene pan-313

els, and membrane markers, ensuring broad representation of the expected input data distribution and significantly314

improving robustness.315

Validation of segmentation algorithms for IST data is complicated, as manual annotation is particularly diffi-316

cult, requiring interpretation of point clouds, which is notoriously difficult, and integrating information scattered317

over several staining channels. Most authors have therefore opted for indirect measurements to assess segmenta-318

tion accuracy. We argue that the best way of assessing the quality of segmentation methods is still to compare319

them to a manually generated ground truth. For this reason, we developed a new visualization scheme, where320

RNAs are colored according to their co-expression. This allows to utilize RNA point clouds in an efficient way321

for identifying cellular boundaries, in particular in regions of poor staining quality. We have annotated 724 cells322

across different tissue types and experimental setups, which we make freely available to the scientific community323

(https://zenodo.org/records/14912364). We expect that this manually curated dataset will ease future developments324

and in particular serve as a basis for benchmarks in the field, which are today still difficult to achieve.325

We demonstrate that incorporating RNA species information into our algorithm did not improve its performance.326

This result is unexpected, since it could be assumed that gene expression data would provide valuable information327

for segmenting cells with distinct transcriptional profiles. Several potential reasons could explain this observation.328

First, RNA density alone may be already a sufficiently informative feature, making the additional inclusion of RNA329

species data redundant. Indeed, improvements are only expected in scenarios where neighboring cell types cannot330

be adequately segmented using membrane and RNA positional data alone — likely representing a small subset331

of the observed segmentation errors. Another explanation is that the current algorithmic strategies for leveraging332

RNA species data may still be suboptimal.333

In a series of validation experiments, we showed that RNA2seg outperforms state-of-the-art methods for cell334

segmentation in IST data, both on data from the same experiments but withheld during training and in a zero-335

shot-learning setting on IST data of a different organism, a different set of membrane markers and a different gene336

panel.337

RNA2seg was designed as a flexible and generalist model, capable of adapting to a wide variety of datasets. First,338

it can accommodate an arbitrary number of input channels, enabling it to fully leverage all available data. Second,339

its RNA representation is independent of the specific gene panel, ensuring that the model remains applicable across340

datasets with varying gene compositions. Third, RNA2seg demonstrates robust performance in a zero-shot learning341

setting. Finally, to further tailor the model to user-specific datasets, we proposed a few-shot learning approach that342

is fast, highly effective, and requires no manual annotations. Together, these features make RNA2seg a powerful343

and versatile tool for cell segmentation across diverse biological sample types.344

While RNA2seg demonstrates competitive performance in cell segmentation, it has several limitations. First, it345

is currently restricted to 2D data. Although many commercial systems currently perform 2D measurements or probe346

only thin 3D volumes, the ability to analyze thick 3D samples will likely become increasingly important, particularly347

for studying intact organoids or tumoroids [26]. Second, we have chosen to represent RNA point clouds as images.348

When using large marker panels, intra-cellular RNA point clouds are typically dense rather than sparse, making349

this representation a logical choice. However, exploring architectures that directly process point clouds could be350

a promising direction, as we have previously proposed for classifying subcellular localization patterns [27]. While351

integrating such an approach with the CNN-based architecture used for membrane stainings presents conceptual352
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challenges, it could potentially enhance efficiency. Finally, while we did not find that a recent Mamba-based architec-353

ture provided any tangible advantage in segmentation performance, leading us to opt for a more parameter-efficient354

CNN-based architecture, this choice may be reconsidered with the emergence of foundation models for segmenta-355

tion [28]. These models, predominantly based on transformer architectures, could further enhance the segmentation356

of IST data, potentially shifting the balance away from CNNs.357

4 Conclusion358

In this study, we introduce RNA2seg, a generalist segmentation algorithm designed for image-based spatial tran-359

scriptomics. Unlike existing methods, RNA2seg integrates information from multiple staining and RNA localization360

to achieve accurate cell segmentation. To train RNA2seg without manual annotations, we developed a student-361

teacher training scheme, enabling the model to learn from a large and diverse dataset. This approach ensures that362

RNA2seg is generalizable and capable of performing zero-shot segmentation on unseen datasets. We argue that363

manual annotations remain essential for benchmarking, even though they are notoriously challenging to generate364

for IST data. To address this, we designed a novel visualization scheme, which enabled us to annotate more than365

700 cells across diverse IST datasets — providing a valuable resource for future benchmarking studies. Finally,366

RNA2seg outperforms existing methods on various segmentation metrics, highlighting its utility in this fundamen-367

tal task for downstream single-cell analysis. In practice, RNA2seg is implemented for OME-zarr to ease large scale368

applications and is available as a pip package : https://github.com/fish-quant/rna2seg369

5 Methods370

5.1 Method overview371

RNA2seg is a deep learning-based cell segmentation method that takes as input DAPI channel XDAPI , RNA point372

clouds {X(i)
RNA}i=1...NRNA

, and optionally additional membrane staining channels (MSC) {X(k)
MSC}k=1...K . The373

output is a cell segmentation mask.374

375

A core element of our approach is an efficient teacher-student framework, which enables the training of a376

dedicated segmentation method without requiring manual annotation.377

Cell segmentation from fluorescent membrane staining channels is a well-studied problem, where previously378

published and trained convolutional neural networks (CNNs) have demonstrated performance close to human-level379

accuracy [9, 10]. However, the segmentation quality of such methods is conditioned on the staining quality which380

tends to be highly heterogeneous in IST data. Consequently, segmentation results can be excellent in some locations381

and very poor in others.382

To generate a high quality training set automatically in a teacher-student framework, our strategy leverages383

Cellpose to generate an initial segmentation of nuclei and cells from DAPI and MSC. We then apply a series384

of rules to filter out segmentation results likely to be incorrect or inaccurate. Using the filtered training labels,385

RNA2seg learns the RNA point cloud density patterns corresponding to cells. Once trained, RNA2seg performs cell386

segmentation even in areas lacking high-quality membrane staining.387

5.2 Teacher-network: generation of the training set388

In order to generate the labeled data for training RNA2seg, we first apply teacher pre-trained networks for cell and389

nucleus segmentation and then select among the segmented cells high-confidence objects (Cv), as described below.390

Additionally, we identify high-confidence background areas (Bv). Then, inspired by SketchPose [24], we generate391

partial back-propagation masks to train the model exclusively on high-confidence cells (Cv) and background areas392

(Bv).393

5.2.1 Candidate cell segmentation with a pre-trained network394

We use the Cellpose cyto3 [10] pre-trained model for segmenting cells. Each MSC is segmented individually, using395

a two-channel image formed by concatenating XDAPI and X
(k)
MSC . For DAPI segmentation, we also utilize the396

Cellpose nuclei [10] pre-trained model.397
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5.2.2 Background segmentation398

We use a training scheme for partial annotation, i.e. pixels are not systematically negative if they are outside high-399

confidence cells. To identify the background regions (Bv) devoid of cells, we rely on RNA density as an indicator.400

The underlying assumption is that areas with low RNA density correspond to background regions without cells.401

To estimate RNA density for each pixel, we apply a Gaussian kernel density estimation with a standard deviation402

of σ = 10 pixels. Background regions are then defined as the set of pixels with RNA density below a threshold Tb.403

This threshold Tb is defined as the 5%-percentile of RNA densities inside the nucleus.404

5.2.3 Selection of consistent cell segmentations405

In this section, we describe how we compute the set of high-confidence cells, denoted as Cv, from the cell segmentation406

provided by the teacher network. Our objective is to exclude poorly segmented cells, particularly those from regions407

with weak cell boundary staining. Our approach assumes that the nucleus segmentation is accurate, which is often408

the case, as the DAPI channels are usually of good quality. Valid cells are identified based on the consistency409

between cytoplasm and nucleus segmentation and the RNA density. The agreement between a segmented cell and410

an independently generated nucleus segmentation thus serves as a surrogate measure of correctness.411

To categorize cell-nucleus segmentation consistency, we first define relationships between cells and nuclei based412

on area overlap thresholds:413

• A cell is considered to contain a nucleus if at least Tcontain = 95% of the nucleus area overlaps with the cell.414

• A cell is considered to intersect a nucleus if more than Tintersect = 1− Tcontain% of the nucleus area overlaps415

with the cell.416

Among the cells segmented by the teacher network, the following cells are retained:417

1. Cells that contain one and only one nucleus.418

2. Cells that do not intersect with a nucleus.419

3. Nuclei that do not intersect with more than one cell.420

Each rule addresses a specific segmentation scenario:421

1. The first rule ensures that cells with consistent nuclear and cytoplasmic segmentation are retained.422

2. The second rule includes cells without an associated nucleus to account for cases where the nucleus is missing423

from the tissue section.424

3. The third rule addresses regions with poor MSC quality, which may result in cellular regions missed by the425

teacher network. In such cases, the nuclear regions are used instead. Including nuclear regions in the training426

labels does not compromise the ground truth, thanks to our partial back-propagation method described below.427

We assume however that cell and nucleus center are close to each other.428

Finally, we exclude from Cv any cell without nucleus or nucleus without cell with more than Tbg = 5% overlap429

with background regions, as such overlap indicates potential segmentation errors.430

431

5.2.4 Generated training label in this study432

We segment cells from different MSC independently and generate training targets for each segmentation result433

separately by applying the rules described above. The resulting training labels are then merged into a comprehensive434

training dataset. Since different MSC can be complementary and no single marker consistently provides superior435

results across all regions, incorporating training labels from multiple MSC ensures a more extensive and robust436

training dataset.437

For the MERFISH datasets, we generate the training target from the cell boundary staining 1 and 3. For the438

cosmx dataset we generate the training target from all of the three available immunostainings. The training labels439

used in this study are available at: https://zenodo.org/records/14916899440
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5.3 RNA image generation441

We transform RNA point cloud data into image data by assigning to each pixel the number n of RNA molecules442

it contains, irrespective of their species. Following the approach described in [15], we then apply a max filter with443

k = 2 and Gaussian kernel filter with σ = 2 to smooth the data. The output is an 1 × H × W image which we444

denote IRNA.445

5.4 RNA2seg network and loss446

The RNA2seg network takes as input two images: a staining image XS including all MSC and the DAPI channel of447

size (K + 1)×H ×W , where K corresponds to the number of MSC, and an RNA image IRNA of size 1×H ×W .448

449

To allow RNA2seg to handle an arbitrary number of stainings, XS is first processed using a ChannelNet archi-450

tecture [20], which outputs a fixed-size image IS of size 3×H ×W , independent of the number K of MSC.451

452

IS is then concatenated with IRNA and passed into a U-Net backbone, which can either be a Mamba-U-Net or453

a CNN-based U-Net architecture adapted from the Cellpose U-Net.454

As output, the model produces an image of size 3 × H ×W , where the first channel indicates the probability455

that a pixel belongs to a cell, and the next two channels provide the horizontal and vertical gradients pointing to456

the cell center, as implemented in Cellpose [10].457

The model’s loss function consists of two components: a cross-entropy loss on the cell probability output and a458

mean squared error (MSE) loss on the predicted gradient that points toward the cell centers.459

5.5 RNA2seg training460

To enable RNA2seg to effectively segments areas with low-quality or missing cell boundary staining, we applied461

dropout to the channels of IS during training. Specifically, membrane staining image channel were replaced by462

empty images with a dropout probability of 0.25, which effectively emulates missing membrane staining signals.463

Additionally, we applied random brightness-contrast adjustments, Gaussian blur filtering, random rotations, an464

random crop masking of the staining images to enhance robustness.465

RNA2seg was trained on 64k partially labeled images of size 1200× 1200, resized to 512× 512. The training was466

conducted with a batch size of 8, using the Adam optimizer [29] with a learning rate of 0.001. We reserved 5% of467

the training dataset for validation and selected the best model based on validation performance after 30 epochs.468

5.6 Co-expression Visualization469

To validate RNA2seg, we manually annotated cells by simultaneous inspection of all channels (DAPI, MSC and the470

generated RNA density channel). However, as shown in Figure 2B, accurately annotating cell boundaries solely with471

staining can be challenging, in particular in regions of low staining quality. To facilitate the annotation process, we472

assign similar colors to RNAs from co-expressed genes, based on the assumption that RNAs from genes co-expressed473

are likely to belong to the same cell.474

First, we estimate co-expression using the spatial arrangements of detected RNA molecules in the image as475

described in our previous work [8]. In brief, by analyzing the spatial distances of the detected RNA positions, we476

can estimate a spatial co-expression value for each gene pair that recapitulates how likely transcripts of the two477

genes appear in close proximity. This leads to a co-expression matrix W ∈ RNg×Ng where Ng is the the number478

of genes in the IST dataset and the wi,j correspond to the spatial co-expression of gene i and j. Each gene i is479

characterized by its coexpression profile (columns Wi of the matrix W ):480

Wi = [wi,0, ..., wi,j , ...wi,Ng
] (1)

Application of Principal Components Analysis (PCA) to W allows us to map each column vector Wi to a481

3-dimensional vector that is then used as an RGB color code of the corresponding RNAs.482

483
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5.7 RNA2seg with colors for each RNA species color484

We also first explored whether this Co-expression visualization scheme could be beneficial for representing RNA485

distributions during training. Hence, instead of using a one-channel image to encode the RNA positions, as described486

above, we represented each RNA species as a 3-dimensional vector, interpretable as an RGB color. Our hypothesis487

was that in addition to RNA density, the differences in transcriptional programs between cells of different type488

should in principle bear useful information for segmentation.489

Alternatively, we tested to treated RGB vectors of each RNA species as learnable parameters that are optimized490

during training.491

To implement these two solutions, for each RNA position, its corresponding 3-dimensional vector is incorpo-492

rated into the RNA image IRNA, with dimensions 3 × H × W . The segmentation network’s first convolutional493

layer is modified to accommodate the dimensions of IRNA. If multiple RNA species occupy the same position in494

the image, one is randomly selected for representation.495

496

5.8 Validation and metrics497

5.8.1 Intersection over Union (IoU)498

Our annotations are done on image of 1200x1200 pixels and are partial as only non ambiguous cell were annotated.499

We computed the intersection over union (IoU) for each annotated cell and its best matched segmented cell. The500

best match is calculated by finding the cell that maximizes the IoU at the pixel (pixel IoU) or the RNA level (RNA501

IoU).502

5.8.2 Spurious and inconsistent cells503

504

As an additional validation metric, we propose to calculate the number of spurious and inconsistent cells:505

• Spurious cells are defined as segmented cells that do not intersect a nucleus and have an RNA count below506

Tspurious, which we set to the 5-percentile of RNAs inside nuclei. Spurious cells likely correspond to false positives.507

• Inconsistent cells are defined as segmented cells that intersect at least one nucleus without fully enclosing it or508

segmented cells containing more than one nucleus, with respect to the defined thresholds Tcontain, Tintersect.509

5.9 Automatic fine-thuning on our in-house Hamster MERFISH dataset510

We first applied the Cellpose DAPI model to segment nuclei and the Cellpose cyto3 model to delineate cell bound-511

aries from the Hamster MERFISH dataset [10]. These segmentations were used to generate a training dataset of512

742 partially labeled images following the method described in Section 5.2. We then fine-tuned our pre-trained513

RNA2seg-CNN over 20 epochs, a process that took less than 10 minutes on our P100 GPU.514

5.10 Benchmarked method hyper-parameters515

For the VHFI dataset and the lung CosMX, we apply a Cellpose cyto3 with a diameter parameter of 60 on each516

available cell boundary staining. We kept the segmentation from the cell boundary staining performing the best.517

We apply Baysor with the nuclei segmentation as input and a confidence parameter of 1. We apply ComSeg with518

mean cell diameter of 7µm.519

5.11 Datasets520

For the training, We use seven dataset from the Vizgen’s Human FFPE Immuno-oncology Data Release (VHFI)521

and a Human Lung CosMx dataset from [11] detail in the Supplementary Table 1. For the Human Lung CosMx522

dataset cell ,we retain a subset of the dataset named ”Lung5 Rep1”.523
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6 Data availability524

RNA2seg is available as a fully documented Python pip package (https://github.com/fish-525

quant/rna2seg) and the weights of the different trained RNA2seg networks can be also found here:526

https://huggingface.co/aliceblondel/RNA2seg.527

Our manually annotated dataset of cells is available at https://zenodo.org/records/14912364.528

The Python code of our novel visualization is available at: https://github.com/tdefa/gene coexpression visualization529

The segmentation results computed for the benchmark are available at : https://zenodo.org/records/14916899530

531
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RNA2seg: a generalist model for cell segmentation in image-based

spatial transcriptomics
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Fig. 1 A) Example of staining and RNA point cloud. From left to right in the first row: DAPI staining, RNA spots with random
color, RNA spots with co-expression color and manual annotation in blue. The second row display the three different available
stainings in the VHFI dataset. The third row display examples of segmentation from VHFI, Cellpose, and RNA2seg-CNN
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Fig. 2 A) Example of staining and RNA point cloud. From left to right in the first row: DAPI staining, RNA spots with random
color, RNA spots with co-expression color and manual annotation in blue. The second row display the three different available
stainings in the VHFI dataset. The third row display examples of segmentation from VHFI, Cellpose, and RNA2seg-CNN
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Fig. 3 Examples of staining and detected RNA spots from the VHFI datasets.
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Fig. 4 Benchmark of RNA2seg performances using different RNA representations strategies. All
models are trained on the VHFI datasets having the same 500 genes spatially resolved. No RNA:
RNA2seg trained solely using stainings. Co-expression: RNA2seg trained on RNA images using our
co-expression-based coloring method. Learnable RNA Color: RNA2seg where the color of each RNA
species is treated as a learnable parameter during training. However, this approach is not transferable
to new datasets and is therefore inapplicable to the mouse ileum in a zero-shot setting. Binary: The
RNA2seg version retained in this study, trained using only positional information.

Dataset name Imaging approach number of Cells

VHFI Breast MERFISH 713,121
VHFI Lung MERFISH 353,762
VHFI Col on MERFISH 677,451

VHFI Melanoma MERFISH 468,138
VHFI Ovarian MERFISH 358,485
VHFI Prostate MERFISH 721,668
VHFI Uterine MERFISH 843,285

CosMx-lung (Lung5 rep1) [1] CosMx 87955

Table 1 Summary of the datasets used for the training. The number of cells
of each VHFI dataset comes from the Vizgen data released. The number of
cells for the CosMx dataset is inferred with Cellpose on membrane staining

Dataset Number of annotated cells

VHFI Breast 185
VHFI Colon 95
VHFI Lung 181
VHFI Melanoma 193
Mouse ileum 70

Table 2 Numbers of manually annotated cells per
dataset.

5

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2025. ; https://doi.org/10.1101/2025.03.03.641259doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.03.641259
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 5 Pixel IoU of RNA2seg-CNN averaged over 10 independent training initializations on all anno-
tated data from the VHFI datasets. The confidence interval (CI) is computed with a t-distribution
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