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ABSTRACT

Histopathological analysis is a cornerstone of cancer diagnosis, with Hematoxylin and Eosin (H&E)
staining routinely acquired for every patient to visualize cell morphology and tissue architecture. On
the other hand, multiplex immunofluorescence (mIF) enables more precise cell type identification
via proteomic markers, but has yet to achieve widespread clinical adoption due to cost and logistical
constraints. To bridge this gap, we introduce MIPHEI (Multiplex Immunofluorescence Prediction
from H&E), a U-Net-inspired architecture that integrates state-of-the-art ViT foundation models
as encoders to predict mIF signals from H&E images. MIPHEI targets a comprehensive panel of
markers spanning nuclear content, immune lineages (T cells, B cells, myeloid), epithelium, stroma,
vasculature, and proliferation. We train our model using the publicly available ORION dataset of
restained H&E and mIF images from colorectal cancer tissue, and validate it on two independent
datasets. MIPHEI achieves accurate cell-type classification from H&E alone, with F1 scores of
0.88 for Pan-CK, 0.57 for CD3e, 0.56 for SMA, 0.36 for CD68, and 0.30 for CD20, substantially
outperforming both a state-of-the-art baseline and a random classifier for most markers. Our results
indicate that our model effectively captures the complex relationships between nuclear morphologies
in their tissue context, as visible in H&E images and molecular markers defining specific cell types.
MIPHEI offers a promising step toward enabling cell-type-aware analysis of large-scale H&E datasets,
in view of uncovering relationships between spatial cellular organization and patient outcomes.

Keywords Computer Vision · Histopathology · Image Translation · Foundation model · In silico labelling
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1 Introduction

The analysis of Hematoxylin and Eosin (H&E)-stained tissue slides is a cornerstone in the diagnosis of many pathologies,
including cancer, providing insights into cell types, cellular phenotypes, tissue architecture and their alterations due to
disease.

Multiplex immunofluorescence (mIF) Andreou et al. [2022], Tan et al. [2020], Im et al. [2019] imaging is a powerful
technique that improves the analysis of tissue sections by providing detailed information beyond what H&E staining can
reveal. mIF achieves this by simultaneously visualizing and quantifying multiple protein markers within a single tissue
section, utilizing fluorescently labeled antibodies that bind to specific proteins, allowing for the identification of cell
types based on marker expression. This capability makes mIF useful across various domains, including cancer biology,
immunology, and infectious disease, where understanding spatial cell organization is critical. By combining molecular
and spatial information at single-cell resolution, mIF supports detailed characterization of tissue microenvironments
and cellular interactions.

The evolution of immunolabeling techniques from traditional immunohistochemistry (IHC) Duraiyan et al. [2012]
has led to more advanced mIF techniques like PhenoCycler Black et al. [2021], which enables the detection of up to
100 markers through multiple imaging cycles, each capturing 4 channels. This iterative process can however degrade
tissue integrity. Among recent advancements, the Orion scanner introduced by Lin et al. Lin et al. [2023a] allows
the simultaneous detection of up to 20 markers in a single cycle, preserving tissue quality while still providing rich
multiplexed information. Orion also allows capturing high-quality, restained H&E images from the same tissue section.

While mIF imaging offers several advantages, it also presents important challenges. Preparing and processing mIF
slides is time-consuming and labor-intensive, requiring expensive reagents and specialized equipment, which are not
always available in all clinical settings, limiting its accessibility. Compared to other techniques for spatial biology, such
as Imaging Mass Cytometry (IMC) Mann et al. [2001] and VisiumHD spatial transcriptomics Oliveira et al. [2024], mIF
detects fewer molecular markers but offers much higher spatial resolution. Like these technologies, mIF is constrained
by high costs, which prevents it from being adopted in clinical practice.

In contrast, H&E slides are routinely generated in clinical practice. Since different cell types are characterized by
distinct protein expression patterns, we hypothesize that certain markers can be predicted from cell morphology captured
in H&E. With the availability of high-quality datasets obtained from technologies like the ORION scanner, which
captures aligned H&E and mIF images with a high number of markers, we can now train AI models to infer mIF data
from H&E images. This would allow us to identify those proteins that are predictable from morphological cues and
perform these predictions on large retrospective cohorts, including clinical trial data, for which an acquisition of mIF
data would not be feasible. Relating the predicted mIF data to outcome or treatment response can then contribute to
biomarker discovery and hypothesis generation in oncology.

In this study, we aim to predict the expression of key markers from H&E, covering nuclear content (Hoechst), vasculature
(CD31), immune populations (CD45, CD68, CD4, FOXP3, CD8a, CD45RO, CD20, PD-L1, CD3e, CD163), epithelial
and stromal structures (E-cadherin, Pan-CK, SMA), and proliferation (Ki67). To achieve this, we introduce MIPHEI:
Multiplex Immunofluorescence Prediction from H&E-stained Whole Slide Images, a U-Net-inspired architecture
integrating state-of-the-art foundation models as encoders. Unlike traditional cell type classification models that rely on
manual labels or pseudo-labels, our method is trained directly on aligned mIF data, avoiding biases from predefined
annotations. It is also highly modular and does therefore not rely on specific nucleus segmentation and cell classification
methods.

The key contributions of this study are as follows:

• Prediction of Numerous Markers from H&E: We identify the proteomic markers and cell types predictable
from H&E images from a wide range of 15 markers.

• Rigorous Validation and Reproducibility: We demonstrate generalization of the method through validation
with cell-level metrics for accurate cell type identification on both internal and two external datasets, moving
beyond pixel-level evaluation. Our study sets a new benchmark framework for H&E to mIF translation.

• New State-of-the-art: Our model outperforms previous models and a random baseline on 15 markers, most of
which are indiscernible to pathologists.

• ViT Foundation Models in U-Net Architecture: one major methodological novelty relies in the integration of
Vision Transformer (ViT) Dosovitskiy et al. [2020] foundation models as the backbone in a U-Net architecture
for histopathological image translation, leveraging advanced representation learning.
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Figure 1: Preprocessing pipeline: (a) H&E and mIF images are aligned using Valis Gatenbee et al. [2023]. Tissue
regions are then selected via Otsu thresholding on H&E, and a trained CNN filters misaligned tiles caused by the
restaining and acquisition process. (b) Autofluorescence is subtracted from mIF images, followed by DAPI-based nuclei
segmentation and nuclei dilation to approximate cell boundaries. (c) Pseudo-labels are generated by computing per-cell
mean marker expression and applying GMM clustering to define marker positivity, determining labels (e.g., CD3e+).

2 Related Works

2.1 Virtual Staining

Image-to-image translation involves transforming images from one domain to another, with Pix2Pix Isola et al. [2017]
being one of the most well-known methods in this domain for paired images. Utilizing conditional adversarial networks,
these techniques enable high-quality image synthesis, supporting tasks such as style transfer, super-resolution, and
domain adaptation, and have driven significant advancements across various applications, as demonstrated by Wang et
al. Wang et al. [2018].

In recent years, image-to-image translation techniques have become increasingly popular for life science applications,
such as predicting super-resolved microscopy images Wang et al. [2019] or bright-field-like images from holographic
images Wu et al. [2019]. In histopathology, such virtual staining techniques have been used to predict immunohisto-
chemistry (IHC) data Sun et al. [2023], DoanNgan et al. [2022], to do virtual multiplexing Wu et al. [2023], Bao et al.
[2021], to predict mIF images from IHC images Ghahremani et al. [2022], or both H&E Rivenson et al. [2019], Bai
et al. [2023], Zhang et al. [2020], Cao et al. [2023] and mIF Christiansen et al. [2018] from unlabeled autofluorescence
images.

In the scope of this study, the most relevant work involves translating H&E images to mIF, which directly addresses the
challenge of performing cell type calling from standard histological stains. A notable example is SHIFT Burlingame
et al. [2020] based on conditional generative adversarial network (cGAN) to predict markers like DAPI, pan-cytokeratin,
and α-smooth muscle actin. Another relevant work is ImmunoAIzer Bian et al. [2021] using a semi-supervised
adversarial approach to predict CD3, CD20, PanCK, and DAPI channels from H&E, trained on both aligned and
unaligned data. More recently, the same author published HEMIT Bian et al. [2024], releasing a dataset and a method
designed for translating H&E to mIHC images targeting DAPI, CD3, and pan-cytokeratin (Pan-CK) markers. The
authors propose a hybrid ViT-CNN generator architecture combining CNNs with Swin Transformers Liu et al. [2021].

2.2 ViT on Dense Prediction Tasks

ViTs Dosovitskiy et al. [2020] are now widely used in image classification and often outperform CNNs when pretrained
with advanced contrastive self-supervised learning (SSL) methods such as MoCov3 Chen et al. [2021], iBOT Zhou et al.
[2021], and DINOv2 Oquab et al. [2023]. These SSL approaches have been adapted to histopathology, enabling recent
foundation models to achieve strong and robust performance across diverse downstream tasks. CTransPath Wang et al.
[2022] uses MoCov3 Chen et al. [2021] with a Swin Transfomer architecture Liu et al. [2021], and was trained on 15.6
million tiles from opensource datasets. UNIv2 Chen et al. [2024] leverages DINOv2 to train a ViT-H/14 model on 200
million tiles from 3.5k proprietary H&E and IHC slides. H-optimus-0 Saillard et al. [2024] is a ViT-G/14 variant with
SSL pretraining based on iBOT Zhou et al. [2021] and DINOv2 Oquab et al. [2023], trained on hundreds of millions of
tiles from 500,000+ H&E whole slide images. These models are among the state-of-the-art in computational pathology,
with DINOv2-based models like UNIv2 and H-optimus-0 outperforming ImageNet-pretrained encoders and CTransPath
on unseen datasets.
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Figure 2: MIPHEI architecture: A U-Net-inspired model, based on VitMatte, is trained to predict mIF images from
H&E, using the H-optimus-0 ViT foundation model, Tanh activation, and a custom weighted MSE loss to correct for
the unbalanced distribution across markers.

While plain ViTs are effective for image-level tasks, they often struggle with dense prediction tasks like image translation
due to limited ability to capture fine local details, unlike CNNs which excel at leveraging local continuity and multiscale
features. To overcome this, hybrid CNN-ViT architectures have been proposed. CellViT Hörst et al. [2024], for example,
uses the UNETR architecture Hatamizadeh et al. [2022], which integrates a ViT encoder into a U-Net-like design,
employing convolutional transpose blocks to create hierarchical features, offering a simple adaptation. ViTMatte Yao
et al. [2024] combines a plain ViT with a convolutional module for pyramidal feature extraction and detail refinement,
using ViT token features only as the bottleneck. More advanced models like ViT-Adapter Chen et al. [2022] and ViT-
CoMer Xia et al. [2024] go further by enabling richer multi-scale interactions between ViT and CNN components, but
at higher computational cost. While these hybrid methods have mainly been applied to segmentation, we hypothesized
they could also benefit dense image translation tasks like mIF prediction, especially when using foundation models
trained on large, diverse datasets.

3 Dataset

We present the datasets used in this study, with Figure 3 providing additional details on tissue distribution, domain
shifts, and dataset composition. The preprocessed data for ORION and HEMIT datasets is available on Zenodo.

3.1 Orion CRC Dataset (Train/Val/Test)

The ORION colorectal cancer (CRC) dataset Lin et al. [2023b,a] was acquired with a novel system capturing 18-channel
immunofluorescence (IF) images alongside H&E staining on the same tissue samples. This dataset includes 41 Whole
Slides Images (WSIs) with both H&E and mIF data. The 15 markers (with additional DNA stain) of interest for this
study are: Hoechst, CD31, CD45, CD68, CD4, FOXP3, CD8a, CD45RO, CD20, PD-L1, CD3e, CD163, E-cadherin,
Pan-CK, SMA and Ki67. The PD-1 channel was not used due to poor signal quality. The H&E images were acquired
with an Aperio GT450 microscope (Leica Biosystems) and registered to the IF images in the original study, at a
resolution of 0.325 microns per pixel (mpp).

3.2 HEMIT Dataset (Test)

The HEMIT dataset Bian et al. [2024] consists of H&E and multiplex-immunohistochemistry (mIHC) images the
same tissue sections, acquired using Mantra system scanner (PerkinElmer, Waltham, MA, USA) with DAPI, CD3, and
Pan-CK markers. It includes 5,292 paired 1024×1024-pixel patches aligned at pixel level at 40× magnification.

3.3 IMMUcan CRC Dataset (Test)

IMMUcan (Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts) Hong et al. [2020] is a European
initiative launched in 2019 to advance Tumor Micro Environment (TME) profiling. We use only the CRC cases,
comprising 35 registered H&E and mIF slides from two cohorts, which include both advanced and less severe stages.

4

https://doi.org/10.5281/zenodo.15340874


MIPHEI-vit: Multiplex Immunofluorescence Prediction from H&E Images A PREPRINT

Cell counts
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Figure 3: Dataset Overview: (a) Distribution of tissue samples and tiles across datasets and splits. (b) 2D UMAP
visualization of H-Optimized-0 embeddings, highlighting domain shifts across our datasets. (c) Normalized cell type
distribution across datasets and splits.

H&E slides were scanned with a Hamamatsu NanoZoomer 2.0-HT (0.5 mpp), and mIF images were acquired on a
PerkinElmer Vectra Polaris. The mIF panel includes DAPI, CD3, CD8, CD4, FOXP3, and Pan-CK. Unlike HEMIT
and ORION, the H&E and mIF slides in IMMUcan come from consecutive sections, requiring a dedicated evaluation
protocol detailed later in Metric Overview. Although currently private, the dataset is expected to become publicly
available.

3.4 Data Preprocessing

We designed a preprocessing pipeline tailored to our H&E-to-mIF prediction task, addressing WSI registration, artifact
removal, autofluorescence subtraction with normalization, and pseudo-label extraction, as illustrated in Figure 1.

3.4.1 H&E to mIF registration on consecutive cuts

Accurate registration between H&E and mIF images is crucial for training and evaluating our models. For Orion and
HEMIT datasets, data was already registered Lin et al. [2023b], Bian et al. [2024]. For the IMMUcan dataset, we used
Valis Gatenbee et al. [2023] for registration of consecutive H&E and mIF slides.

3.4.2 Tile Selection

To reduce artifacts from restaining and acquisition in the ORION dataset, we filtered aligned H&E and mIF tiles
using several quality control steps. We used thresholding on an empty mIF channel—without antibody staining but
capturing shared noise—to identify artifacts affecting all mIF channels. Poor H&E quality tiles were identified by
clustering H-optimus-0 embeddings and discarding clusters associated to obvious artifacts. We also manually annotated
misaligned tiles and trained a CNN to detect them automatically from H&E and DAPI images. In total, about 40k tiles
(10%) were excluded.

For the IMMUcan dataset, where H&E and mIF are from consecutive sections, we selected well-aligned tiles to
ensure reliable correlation analysis based on three criteria: Pearson correlation of aligned nuclei density maps from
32×32 patches (threshold=0.25 per tile), tissue overlap (IoU > 0.5), and tissue percentage (> 40%). We extracted
1024× 1024 pixel tiles at 20x (0.26 mm²), retaining 17k tiles covering 44.4 cm².
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3.4.3 Autofluorescence Subtraction & Data Normalization

Autofluorescence (AF), captured as an independent channel IAF , refers to light naturally emitted by the tissue across
channels, introducing noise in other markers. We subtract the AF from each marker channel IcIF , using λc and bc which
were manually adjusted using a Napari Sofroniew et al. [2025] tool we developed:

Iccor = max(0, IcIF − λc · IAF + bc)

Next, each channel is normalized using the 99.9th percentile qc0.999, computed per marker from the distribution of
foreground pixel intensities across the training set, and then log-transformed:

Icnorm = 255 · log
(
min(Iccor, q

c
0.999)

qc0.999
+ 1

)
This logarithmic transformation compresses high-intensity values and reduces the impact of extreme outliers, while
normalization ensures a consistent dynamic range across markers. The autofluorescence Napari tool, selected parameters,
code, model, and data access instructions are available on our GitHub, within the Sanofi Public organization, under
specific license conditions including a limitation to non-commercial use only.

3.4.4 Single-Cell Pseudo-Label Extraction

To establish a ground truth for evaluating our model’s ability to identify marker-positive cells from H&E images, we
used a standard cell type calling approach on mIF images Lin et al. [2023a]. We first segmented nuclei from the
DAPI channel using Cellpose Stringer et al. [2021] fine-tuned on our data. As a proxy for cell regions, we dilated the
nuclear regions by 2 µm. Single-cell analysis was performed by extracting mean fluorescence intensities, followed
by unsupervised gating using a Gaussian Mixture Model (GMM) to distinguish positive from negative cells Zhang
et al. [2022], with posterior probabilities estimated from the GMM. Although effective, this approach is sensitive to
artifacts, approximate boundaries, and signal spillover. To improve robustness, we implemented a hierarchical gating
strategy making sure that the biological marker hierarchy was preserved. For instance, given that CD3 positive cells are
also CD45 positive, we kept CD3 positivity only for CD45 positive cells. By applying these rules, we obtained a high
confidence annotation of our cells.

For the IMMUcan dataset, we used single-cell data provided by the consortium, which was generated using in-house
clustering and nucleus segmentation. Since the same nuclei are not necessarily present in consecutive H&E and mIF
sections, we applied Hoverfast Liakopoulos et al. [2024] for nucleus segmentation from H&E images, allowing us to
perform the cell-level correlation analysis explained in section 5.2.

4 Methodology

This section outlines our overall approach for predicting mIF images from H&E images. We used the Orion dataset for
training, and HEMIT and IMMUcan datasets for testing.

4.1 Model Architecture

Our model utilizes a U-Net generator to perform the image translation task from H&E to mIF signals (Figure 2). The
architecture supports various encoder types, including CNNs like ConvNeXt v2 Woo et al. [2023], Swin Transformer
Liu et al. [2021], and plain ViTs Dosovitskiy et al. [2020], enabling integration of recent foundation models in histology,
such as CTransPath, Univ2, and H-optimus-0 Wang et al. [2022], Chen et al. [2024], Saillard et al. [2024]. CNN-based
encoders naturally align with the classical U-Net design, providing pyramidal features. For ViTs, which maintain
fixed feature dimensions across layers, we explore two alternatives to generate multi-scale features: (1) convolutional
transpose for upsampling token features, as used in UNETR Hatamizadeh et al. [2022] and CellViT Hörst et al. [2024],
and (2) a hybrid approach inspired by ViTMatte Yao et al. [2024], where a convolutional stream extracts pyramidal
features while ViT features serve as the bottleneck. Unlike original ViTMatte, which concatenates a trimap to the input
image, we use only the H&E RGB image and omit convolutional necks and window attention. For simplicity, we still
refer to this variant as VitMatte.

Building on these encoded features, the decoder reconstructs outputs using nearest interpolation for upsampling,
combined with skip connections, dual 3×3 convolutional layers, batch normalization, and ReLU activation. Multiple
output heads predict various mIF signals from the same decoder outputs, with a final Tanh activation.

6
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4.2 Loss Function

We train MIPHEI using a weighted Mean Square Error (MSE) loss to ensure accurate translation from H&E to mIF
signals while accounting for varying signal intensities and prevalence across markers. Each marker’s loss is scaled by
the inverse of its standard deviation to balance contributions Mai et al. [2021].

Let LMSE,j denote the MSE loss for the jth marker, σj denote the standard deviation, M be the total number of markers,
and λ the weight of the reconstruction loss. The weighted MSE loss is then defined as:

LwMSE =
λ

M

∑
j

1

σ2
j

LMSE,j

4.3 Foundation Model Training Strategies

While CNN-based encoders within the U-Net architecture are fully fine-tuned in all experiments, we explore two
efficient training strategies for large ViT-based foundation model encoders: (1) decoder-only training with a frozen
foundation encoder, leveraging robust pretrained features while reducing trainable parameters; (2) Low-Rank Adaptation
(LoRA) Hu et al. [2022] with rank = 8 and α = 1, which adapts a pretrained ViT encoder by adding trainable low-rank
matrices to the Query and Value projections of the attention layers.

5 Experiments

Here we present the experimental workflow that we set up to assess the performance and robustness of our image
translation model from H&E to mIF.

5.1 Training Setup

5.1.1 Data Configuration

We split the Orion dataset by slide into training (37), validation (2), and test (2) sets. For HEMIT, we used its original
train-validation-test splits, while for IMMUcan, all tiles were treated as test set.

All models are trained on H&E-mIF images from ORION extracted as 256x256 pixel tiles at 0.5 mpp. For normalization,
target data is scaled to the range [−0.9, 0.9] to prevent saturation at extreme values in Tanh activation. Input H&E RGB
data is normalized using the mean and standard deviation of the foundation model employed.

To enhance generalization, augmentations include spatial transformations, such as horizontal and vertical flips and coarse
dropout (zeroing out a random box in both input and target), along with color augmentations like stain augmentation,
random brightness and contrast adjustments, gaussian blur, and gaussian noise. These augmentations simulate variations
in stain intensity, color distributions, and common imaging artifacts. To improve robustness, we trained a CycleGAN
Zhu et al. [2017] following Runz et al. Runz et al. [2021] to translate Orion H&E images toward the IMMUcan style,
capturing more complex domain shift, and used both original and precomputed translated tiles as augmentation during
training.

5.1.2 Training Configuration

We adopt similar Pix2Pix hyperparameters, given its role as a classical image translation model. We use the Adam
optimizer with a learning rate of 2× 10−4, kept constant in the first half of training before linearly decaying to zero.
A linear warmup phase is applied to the generator’s learning rate for the first 400 iterations to improve stability and
adaptation, as recommended for ViTs by Dosovitskiy et al. Dosovitskiy et al. [2020]. On top of data augmentations,
regularization includes weight decay (1× 10−5), gradient clipping (max norm 1), and dropout (0.1). Non-pretrained
weights are initialized using a normal distribution with a gain of 0.02, and biases are set to zero. All training are
conducted with a batch size of 16. All experiments were performed on a single A100 GPU.

5.2 Metric Overview

To evaluate our image translation model from H&E to mIF, we used both standard pixel-level and cell-level metrics. At
the pixel level, we employed PSNR and SSIM. One of the most important aspect of our model is to capture cell-type
information, which is not adequately measured by these metrics. We therefore designed a cell-level fidelity metric.
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Figure 4: Prediction pipeline and prediction visualization: (a) Inference pipeline: mIF images are first generated
using a trained U-Net model. Predicted single-cell data are then extracted by averaging predicted mIF signals within
each nucleus, using nuclei masks from an external segmentation model. Finally a cell classifier, trained on validation set
cells, predicts cell types. (b) Prediction examples from our best model: Predicted mIF images and cell types (shown
as colored cell boundaries) are compared to target mIF images and annotated cell types from the same restained tissue
section in the Orion (CD3e, CD8a) and HEMIT (Pan-CK, CD3) datasets. (c) IMMUcan large-area visualization:
Nuclei predictions on H&E alongside clustered nuclei from the corresponding consecutive mIF sections.

For this, we extract predicted single-cell data by averaging predicted marker expression within each cell, and classify
them using a logistic regression trained on validation set cells. The classifier is then applied to the test set and predictions
are compared to pseudo-labels as described in subsection 3.4.4. We use a classifier instead of direct gating on predicted
mIF channels to improve robustness to individual channel errors and account for calibration differences between
predicted and target fluorescence intensities.

We assess the discriminative power of our model’s predictions by computing Cell AUC (Receiver Operating Character-
istic Area Under the Curve), using the predicted mean intensity per nucleus as a score compared to pseudo-labels. To
account for class imbalance and better assess model performance, we report F1 score using the cell classifier predictions,
as most markers have a lower frequency of positive cells.

We further analyze our model by computing cell count correlations on IMMUcan for CD3, CD8, CD4, FOXP3, and
Pan-CK. Since consecutive tissue sections in the IMMUcan dataset are biologically similar but not identical, direct
pixel-level alignment is not feasible. However, the minimal spatial separation between sections preserves overall tissue
architecture and cellular distribution, allowing for meaningful region-level comparisons. We compute the correlation
between predicted and target positive cell counts across registered tiles, using predictions from the logistic regression-
based single-cell classification. Following preprocessing in D.1, we compute Pearson correlation coefficients between
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Figure 5: Evaluation analysis: (a) Orion test set: Performance comparison across all Orion markers between MIPHEI,
HEMIT*, HEMIT (all trained on Orion train set) and a stratified random model predicting classes based on cell type
proportions. Markers are grouped by general functions, with hierarchical relationships indicated by arrows. Cell
classification model is a logistic regression model trained on Orion validation cells. (b) HEMIT dataset: Comparison
between MIPHEI (trained on Orion), the HEMIT model (trained on HEMIT train set) and a stratified random model.
Cell classification model is a logistic regression: trained on 5% of training cells for MIPHEI, and all available training
cells for the HEMIT model. (c) IMMUcan (consecutive sections): Pearson correlation and regression plots (with linear
fits) between predicted and pseudo-labeled cell type counts from 17k tiles using MIPHEI.

tile-level cell counts (0.26 mm² area per tile) for each marker. High correlations, even if imperfect, indicate effective
cell identification.

6 Results

This section presents an ablation study to identify critical model components, comparisons with the state-of-the-art
HEMIT method, and a detailed analysis of marker-specific performance. We selected HEMIT for benchmarking as
it addresses a similar problem, provides public code and data for direct comparison, and outperforms baselines like
Pix2Pix used in other related work such as SHIFT.
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6.1 Ablation studies

To identify critical components and configurations significantly impacting performance, we trained all models for 15
epochs (∼276k iterations) with batch size 16 by default.

Table 1: Ablation Study: Performance Metrics Across Model Configurations on ORION test set

Configuration PSNR SSIM Cell
AUC

Cell F1

Impact of GAN Discriminator (UNETR H-optimus-0 LoRA)
Generator only 27.86 0.840 0.868 0.431
Pix2Pix (GAN) 27.00 0.830 0.817 0.410
Impact of Foundation Model Encoder (UNETR with LoRA)
CTransPath 26.96 0.837 0.812 0.351
Univ2 27.73 0.838 0.862 0.424
H-optimus-0 (se-
lected)

27.86 0.840 0.868 0.431

Encoder Finetuning Method (UNETR H-optimus-0)
Frozen encoder 27.44 0.836 0.857 0.413
LoRA (selected) 27.86 0.840 0.868 0.431

Impact of Architecture
U-Net-ResNet50 26.54 0.832 0.812 0.344
U-Net-ConvNeXtv2
Large

27.40 0.839 0.840 0.379

HEMIT* 27.08 0.837 0.831 0.360
UNETR 27.86 0.840 0.868 0.431
MIPHEI (Best) 27.78 0.837 0.876 0.438

6.1.1 Impact of Discriminator

We evaluated the impact of adding a discriminator in a Pix2Pix-like setup, using UNETR as the generator and the
standard patch-based discriminator from Pix2Pix. We found that the discriminator slightly reduces pixel-level metrics,
and consistently cell-type classification accuracy. We hypothesize the model favors realism over fidelity (Table 1), thus
leading to more realistic looking images, but not providing more accurate predictions. For this reason, we excluded the
discriminator from further experiments.

6.1.2 Model Architecture

We next compared four U-Net-inspired architectures for our mIF prediction model: two convolution-based encoders
pre-trained on ImageNet—ResNet50 (37M parameters) and ConvNeXt v2 Large (203M parameters)—and two U-
Net variants that both use the H-optimus-0 foundation model as encoder but differ in their ViT integration strate-
gies—UNETR (1.17B parameters, 36M trainable via LoRA) and ViTMatte (1.14B parameters, 6.6M trainable via
LoRA). U-Net with a ResNet50 encoder showed lower performance, likely due to its smaller size and lack of domain-
specific pretraining. In contrast, U-Net-ConvNeXt achieved strong results, benefiting from greater model capacity
and attention-like mechanisms. Transformer-based variants using H-optimus-0 encoder significantly outperformed
convolutional ones, emphasizing the advantage of employing pretrained foundation models for the encoder component
in our task. UNETR and ViTMatte achieved similar performance, but ViTMatte converged much faster, reaching
UNETR’s 10-epoch performance after the first one only. This is likely due to its convolutional ’detail capture’ stream,
which provides intermediate skip features that complement ViT representations and aid spatial reconstruction more
effectively than UNETR’s token-based upsampling. Overall, ViTMatte offers the best trade-off between performance
and training efficiency.

6.1.3 Foundation Model Benchmark

We evaluated three foundation-model encoders available for our image translation task (UNETR with LoRA):
CTransPath, Univ2, and H-optimus-0. CTransPath was significantly outperformed by Univ2 and H-optimus-0, which
provided similar results with a slight advantage for H-optimus-0, which we therefore selected.
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6.1.4 Finetuning Strategies

Finally, we evaluated the finetuning strategies described in subsection 4.3 using UNETR with the H-optimus-0 encoder.
Our results show that LoRA improves performance over a frozen encoder, achieving a higher test cell AUC (0.431 vs.
0.413). Based on this, we adopt LoRA as our fine-tuning strategy.

Based on our ablation study, the best-performing configuration for MIPHEI is ViTMatte with the H-optimus-0 encoder,
adapted using LoRA, and trained without a GAN strategy, providing an optimal balance between performance, efficiency,
and convergence speed.

6.2 Comparison with State of the Art (HEMIT model)

To benchmark our proposed model, MIPHEI, against the state-of-the-art HEMIT, we evaluate cross-dataset gener-
alization using five models: (1) MIPHEI, trained on ORION, (2) the official HEMIT checkpoint trained on the
HEMIT dataset, (3) HEMIT* trained on ORION using the HEMIT-architecture, but with the MIPHEI training scheme
(weighted MSE loss, no discriminator), (4) HEMIT-Orion, trained on ORION using the original HEMIT pipeline, and
(5) a stratified random model as a baseline, assigning cell type probabilities based on their distribution in the test
datasets, with metrics averaged over 100 runs to account for variability in random sampling. Since most cell subtypes
are not identifiable from H&E alone by a pathologist, the task is challenging, and the random baseline provides a
reference to show that our model outperforms chance-level expectations. Evaluation is conducted on the ORION test
set (in-domain for models trained on ORION), on the HEMIT validation and test sets and the IMMUcan dataset, both
serving as external out-of-domain benchmarks.

6.2.1 Evaluation on ORION test set

Table 2: Overall Cell-Level Performances on Test Sets

Cell
Metric

MIPHEI
(Orion)

HEMIT
(HEMIT)

HEMIT*
(Orion)

HEMIT
(Orion) Random

ORION Dataset (Test Set)
AUC 0.876 - 0.831 0.701 -
F1 0.438 - 0.360 0.253 0.140

HEMIT Dataset (Average Validation & Test Sets)
AUC 0.844 0.863 0.764 0.598 -
F1 0.701 0.663 0.471 0.481 0.333

IMMUcan Dataset
Pearson 0.690 - 0.667 0.422 -

The results of performance evaluation of all tested models is shown in Table 2, Figure 5). HEMIT-Orion, trained
with the original HEMIT pipeline, outperformed the random model, but showed the lowest performance across all
markers except PD-L1, for which all methods performed poorly. We hypothesize that this was due to the use of the L1
loss, which may be less effective for markers with low intensity or high background proportion, as suggested by the
stronger results of HEMIT* trained with our setup. On the other hand, MIPHEI achieved the best overall performance,
surpassing both HEMIT* and HEMIT-Orion across nearly all markers. The only exception was Ki67, where HEMIT*
performed slightly better, achieving a Cell F1 score 0.3% higher than MIPHEI.

These results confirm that MIPHEI provides the most robust predictions within its training domain. The improved
performance of HEMIT* over HEMIT-Orion further demonstrates the effectiveness of our training pipeline, even when
applied to an alternative architecture.

6.2.2 Evaluation on HEMIT dataset

The HEMIT dataset serves as an external test set for assessing the robustness of our approach. We compare MIPHEI
(train: ORION), with the HEMIT model (train: HEMIT, released checkpoint). As Figure 3.B suggests, the HEMIT
validation and test sets come from different domains, but both are contained within the training domain, with the test
domain being more strongly represented. Hence, we report cell-level performances separately for each. We use logistic
regression as the cell classifier, trained on 5% of the training cells for MIPHEI and all training cells for HEMIT. As
MIPHEI predicts 15 ORION markers while HEMIT predicts only Pan-CK and CD3, each model’s classifier is trained
on the full set of markers predicted by its respective model.

11



MIPHEI-vit: Multiplex Immunofluorescence Prediction from H&E Images A PREPRINT

On the HEMIT test set, MIPHEI slightly outperforms HEMIT by +3% F1 score for Pan-CK (Figure 5), but HEMIT
significantly outperforms MIPHEI on CD3, with a +22% Cell F1 score. However, on the HEMIT validation set,
MIPHEI surpasses HEMIT for both markers, achieving +18% F1 for Pan-CK and +17% for CD3. This is a strong
result, as MIPHEI was evaluated on an external dataset with only minimal adaptation of the auxiliary cell classification
stage, using just 5% of the training data. In contrast, the HEMIT model was trained on data that included images from
both the validation and test domains of the HEMIT dataset (Figure 3.C). MIPHEI demonstrates stronger generalization,
likely due to its foundation model encoder, enabling better adaptation to unseen domains.

6.2.3 Evaluation on IMMUcan dataset

We further evaluate model generalization on the IMMUcan dataset by performing a correlation analysis between
predicted cell type counts from H&E and pseudo-label counts from consecutive mIF sections. Pearson correlation is
computed over 0.26 mm² regions for MIPHEI, HEMIT*, and HEMIT. Each model uses its own logistic regression cell
classifier, trained on ORION validation cells for MIPHEI and HEMIT*, and on all HEMIT training cells for HEMIT.

Across all markers, MIPHEI achieves the highest Pearson correlation, outperforming both HEMIT* and HEMIT, further
confirming its superiority in cross-domain generalization (Figure 5).

6.3 Marker-Level Analysis

6.3.1 In-domain performance analysis

We have demonstrated that MIPHEI consistently outperforms random predictions for all markers, confirming its ability
to capture meaningful morphological cues from H&E to estimate protein expression. However, the predictability varies
across markers and cell types (Figure 5.A).

Markers with the highest performance include epithelial markers E-cadherin (F1 0.903) and Pan-CK (F1 0.884), which
label epithelial cells forming well-defined clusters and glandular structures in H&E. The immune marker CD45 (F1
0.681) also performs well. While it mainly identifies lymphocytes, which are easily recognizable in H&E, it also
includes cells like monocytes, which are harder to spot, making prediction a bit more challenging.

Markers with moderate performance included SMA (F1 0.564), which labels smooth muscle cells, and CD31 (F1 0.386),
which marks endothelial cells. Their more subtle morphological features may have contributed to lower accuracy:
smooth muscle cells have a spindle-shaped appearance but can be confused with fibroblasts, while endothelial cells
are typically sparse and located within vessel structures, making them harder to distinguish. Immune subtype markers
CD3e, CD45RO, CD4, CD8a, and CD20 (F1 0.229–0.572) showed moderate performance, with broader T-cell markers
like CD3e achieving better performance than more specific ones like CD8a, which are harder to identify. While
lymphocytes are visible in H&E, their subtypes remain indistinguishable to pathologists, highlighting our model’s
value on this difficult task. Macrophage markers CD68 (F1 0.362) and CD163 (F1 0.206) faced similar challenges, as
their heterogeneity complicates identification, with CD163 being a macrophage subtype of CD68, further complicating
prediction. Markers with the lowest performance are FOXP3 (F1 0.114) and PD-L1 (F1 0.048), both challenging for
different reasons. FOXP3 marks rare regulatory T-cells, a highly specific CD4+ subtype, making it one of the most
difficult immune markers to predict. PD-L1, a functional marker, lacks a clear association with a single cell type and
shows irregular expression across various cells, making probably prediction from H&E nearly impossible.

In summary, structural markers and broad immune markers seem predictable with high accuracy. Markers defining
specific immune subtypes are harder to predict, and some functional markers are not predictable with an accuracy high
enough to be applicable in practice.

6.3.2 Out-of-domain performance analysis

Our external validation on HEMIT and IMMUcan confirms that MIPHEI, trained on ORION, generalizes well to
datasets with domain shifts in mIF technology and H&E appearance, requiring minimal adaptation.

On the HEMIT dataset, analysis is limited by the small number of available markers, but our model performs well with
only minimal adaptation of the cell classifier using 5% of the training cells.

On the IMMUcan dataset, we observe strong correlation for CD4 (0.80) CD3e (0.73) and CD8 (0.69), and moderate
correlation for FOXP3 (0.60) and Pan-CK (0.63). We also observe overdetection for CD3e (i.e. cells with CD3e
prediction and measured 0 expression) and underdetection of Pan-CK (cells with predicted 0-expression and positive
according to the measurement). Manual inspection showed that this was mainly due to low-quality tiles with high
auto-fluorescence.
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7 Discussion

In this study, we present MIPHEI, a method trained to predict 16 mIF channels from standard H&E slides. For this, we
proposed a U-Net with a ViT-based foundation model as encoder and demonstrated that this architecture outperforms
previously proposed methods. Moreover, we showed that MIPHEI generalizes well across datasets. We attribute this to
the robust and transferable encodings learned by the foundation model, which was exposed to millions of tiles during
pretraining. Our findings highlight the value of leveraging foundation models for mIF prediction, and potentially for
other image translation tasks in histology.

We also introduced a validation strategy focused on single-cell metrics, which we believe are the most relevant for
this task. Pixel-wise accuracy may be unreliable, as H&E images are usually not informative about cytoplasmic
boundaries. Instead, the biologically meaningful information lies in protein expression levels within individual cells,
protein positivity, or the resulting cell type. We reflect this in our evaluation framework, which we provide as part of
this study.

Accurate, domain-robust mIF prediction opens the door to a range of applications. While direct clinical deployment
for diagnostics may remain challenging, MIPHEI proves to be a powerful tool for mining large retrospective co-
horts—enabling the identification of cell types without relying on manual annotation. Ultimately, this can allow to
identify associations between specific cell populations, their spatial arrangements, and clinically relevant outcomes
such as survival or treatment response. MIPHEI thus holds promise for hypothesis generation and exploratory analysis.
Furthermore, extending this approach to predict clinically relevant scores, such as the Immunoscore, represents a
compelling direction for future work.

Our study is not free of limitations. Although the number of training tiles was substantial, they were derived from only
41 slides. Access to larger and more diverse datasets would likely improve the model’s robustness to domain shifts and
biological variability. Additionally, we observed that the cell classification model still requires fine-tuning on a small
set of labeled cells when applied to out-of-domain data. As such, if a domain shift is anticipated, some mIF data will
still be needed for calibration.

8 Conclusion

In this paper, we present MIPHEI, a deep learning framework that predicts mIF images from H&E using ViT foundation
models as encoders within a U-Net architecture. MIPHEI outperforms state-of-the-art models on both internal and
external datasets, demonstrating strong generalization across staining protocols and imaging conditions. We evaluated
MIPHEI across 15 protein markers and associated cell types. It achieves high accuracy for epithelial (Pan-CK, E-
cadherin) and broad immune markers (CD45, CD3e), performs moderately on more specific immune subtypes (CD8a,
CD4, CD45RO, CD68, CD163) and stromal markers (CD31, α-SMA), and struggles with FOXP3 and PD-L1 due to
their complexity and small number of positive cells.
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